Microscopic Structural Analysis of Complex Networks: An Empirical Study Using Motifs
نویسندگان
چکیده
Complex Networks can depict a clear image of real-world systems. A scenario be represented graph with interconnected layers - called multilayer network. Finding motifs give an idea the topology complex systems and help understand graphs’ dynamics. Looking at as atoms network is helpful to analyze relationship between nodes layers. This work suggests sub-graph enumeration approach find count in The proposed has many applications mining, particularly structure dynamics networks.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Learning Markov Logic Networks Using Structural Motifs
Markov logic networks (MLNs) use firstorder formulas to define features of Markov networks. Current MLN structure learners can only learn short clauses (4-5 literals) due to extreme computational costs, and thus are unable to represent complex regularities in data. To address this problem, we present LSM, the first MLN structure learner capable of efficiently and accurately learning long clause...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولUsing Structural Motifs for Learning Markov Logic Networks
Markov logic networks (MLNs) use first-order formulas to define features of Markov networks. Current MLN structure learners can only learn short clauses (4-5 literals) due to extreme computational costs, and thus are unable to represent complex regularities in data. To address this problem, we present LSM, the first MLN structure learner capable of efficiently and accurately learning long claus...
متن کاملData envelopment analysis in service quality evaluation: an empirical study
Service quality is often conceptualized as the comparison between service expectations and the actual performance perceptions. It enhances customer satisfaction, decreases customer defection, and promotes customer loyalty. Substantial literature has examined the concept of service quality, its dimensions, and measurement methods. We introduce the perceived service quality index (PSQI) as a sing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3160206